gloox  1.0.28
md5.cpp
1 /*
2  Copyright (c) 2006-2023 by Jakob Schröter <js@camaya.net>
3  This file is part of the gloox library. http://camaya.net/gloox
4 
5  This software is distributed under a license. The full license
6  agreement can be found in the file LICENSE in this distribution.
7  This software may not be copied, modified, sold or distributed
8  other than expressed in the named license agreement.
9 
10  This software is distributed without any warranty.
11 */
12 
13 /*
14  This class is based on a C implementation of the MD5 algorithm written by
15  L. Peter Deutsch.
16  The full notice as shipped with the original verson is included below.
17 */
18 
19 /*
20  Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
21 
22  This software is provided 'as-is', without any express or implied
23  warranty. In no event will the authors be held liable for any damages
24  arising from the use of this software.
25 
26  Permission is granted to anyone to use this software for any purpose,
27  including commercial applications, and to alter it and redistribute it
28  freely, subject to the following restrictions:
29 
30  1. The origin of this software must not be misrepresented; you must not
31  claim that you wrote the original software. If you use this software
32  in a product, an acknowledgment in the product documentation would be
33  appreciated but is not required.
34  2. Altered source versions must be plainly marked as such, and must not be
35  misrepresented as being the original software.
36  3. This notice may not be removed or altered from any source distribution.
37 
38  L. Peter Deutsch
39  ghost@aladdin.com
40 
41  */
42 /* $Id: md5.c,v 1.6 2002/04/13 19:20:28 lpd Exp $ */
43 /*
44  Independent implementation of MD5 (RFC 1321).
45 
46  This code implements the MD5 Algorithm defined in RFC 1321, whose
47  text is available at
48  http://www.ietf.org/rfc/rfc1321.txt
49  The code is derived from the text of the RFC, including the test suite
50  (section A.5) but excluding the rest of Appendix A. It does not include
51  any code or documentation that is identified in the RFC as being
52  copyrighted.
53 
54  The original and principal author of md5.c is L. Peter Deutsch
55  <ghost@aladdin.com>. Other authors are noted in the change history
56  that follows (in reverse chronological order):
57 
58  2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
59  either statically or dynamically; added missing #include <string.h>
60  in library.
61  2002-03-11 lpd Corrected argument list for main(), and added int return
62  type, in test program and T value program.
63  2002-02-21 lpd Added missing #include <stdio.h> in test program.
64  2000-07-03 lpd Patched to eliminate warnings about "constant is
65  unsigned in ANSI C, signed in traditional"; made test program
66  self-checking.
67  1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
68  1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
69  1999-05-03 lpd Original version.
70  */
71 
72 #include "config.h"
73 
74 #include "md5.h"
75 
76 #include <cstdio>
77 #include <string.h>
78 
79 #include <cstdio> // [s]print[f]
80 
81 namespace gloox
82 {
83 // #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
84 // #ifdef ARCH_IS_BIG_ENDIAN
85 // # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
86 // #else
87 // # define BYTE_ORDER 0
88 // #endif
89 
90 #undef BYTE_ORDER
91 #define BYTE_ORDER 0
92 
93 #define T_MASK (static_cast<unsigned int>(~0))
94 #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
95 #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
96 #define T3 0x242070db
97 #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
98 #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
99 #define T6 0x4787c62a
100 #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
101 #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
102 #define T9 0x698098d8
103 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
104 #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
105 #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
106 #define T13 0x6b901122
107 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
108 #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
109 #define T16 0x49b40821
110 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
111 #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
112 #define T19 0x265e5a51
113 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
114 #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
115 #define T22 0x02441453
116 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
117 #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
118 #define T25 0x21e1cde6
119 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
120 #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
121 #define T28 0x455a14ed
122 #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
123 #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
124 #define T31 0x676f02d9
125 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
126 #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
127 #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
128 #define T35 0x6d9d6122
129 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
130 #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
131 #define T38 0x4bdecfa9
132 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
133 #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
134 #define T41 0x289b7ec6
135 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
136 #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
137 #define T44 0x04881d05
138 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
139 #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
140 #define T47 0x1fa27cf8
141 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
142 #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
143 #define T50 0x432aff97
144 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
145 #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
146 #define T53 0x655b59c3
147 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
148 #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
149 #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
150 #define T57 0x6fa87e4f
151 #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
152 #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
153 #define T60 0x4e0811a1
154 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
155 #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
156 #define T63 0x2ad7d2bb
157 #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
158 
159 
160  const unsigned char MD5::pad[64] =
161  {
162  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
163  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
164  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
165  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
166  };
167 
169  : m_finished( false )
170  {
171  init();
172  }
173 
175  {
176  }
177 
178  void MD5::process( const unsigned char* data /*[64]*/ )
179  {
180  unsigned int a = m_state.abcd[0];
181  unsigned int b = m_state.abcd[1];
182  unsigned int c = m_state.abcd[2];
183  unsigned int d = m_state.abcd[3];
184  unsigned int t;
185 #if BYTE_ORDER > 0
186  /* Define storage only for big-endian CPUs. */
187  unsigned int X[16];
188 #else
189  /* Define storage for little-endian or both types of CPUs. */
190  unsigned int xbuf[16];
191  const unsigned int *X;
192 #endif
193 
194  {
195 #if BYTE_ORDER == 0
196  /*
197  * Determine dynamically whether this is a big-endian or
198  * little-endian machine, since we can use a more efficient
199  * algorithm on the latter.
200  */
201  static const int w = 1;
202 
203  if( *(reinterpret_cast<const unsigned char *>( &w )) ) /* dynamic little-endian */
204 #endif
205 #if BYTE_ORDER <= 0 /* little-endian */
206  {
207  /*
208  * On little-endian machines, we can process properly aligned
209  * data without copying it.
210  */
211  if( !((data - reinterpret_cast<const unsigned char*>( 0 )) & 3) )
212  {
213  /* data are properly aligned */
214  X = reinterpret_cast<const unsigned int*>( data );
215  }
216  else
217  {
218  /* not aligned */
219  memcpy( xbuf, data, 64 );
220  X = xbuf;
221  }
222  }
223 #endif
224 #if BYTE_ORDER == 0
225  else // dynamic big-endian
226 #endif
227 #if BYTE_ORDER >= 0 // big-endian
228  {
229  /*
230  * On big-endian machines, we must arrange the bytes in the
231  * right order.
232  */
233  const unsigned char* xp = data;
234  int i;
235 
236 # if BYTE_ORDER == 0
237  X = xbuf; // (dynamic only)
238 # else
239 # define xbuf X /* (static only) */
240 # endif
241  for( i = 0; i < 16; ++i, xp += 4 )
242  xbuf[i] = xp[0] + ( xp[1] << 8 ) + ( xp[2] << 16 ) + ( xp[3] << 24 );
243  }
244 #endif
245  }
246 
247 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
248 
249  /* Round 1. */
250  /* Let [abcd k s i] denote the operation
251  a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
252 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
253 #define SET(a, b, c, d, k, s, Ti)\
254  t = a + F(b,c,d) + X[k] + Ti;\
255  a = ROTATE_LEFT(t, s) + b
256  /* Do the following 16 operations. */
257  SET(a, b, c, d, 0, 7, T1);
258  SET(d, a, b, c, 1, 12, T2);
259  SET(c, d, a, b, 2, 17, T3);
260  SET(b, c, d, a, 3, 22, T4);
261  SET(a, b, c, d, 4, 7, T5);
262  SET(d, a, b, c, 5, 12, T6);
263  SET(c, d, a, b, 6, 17, T7);
264  SET(b, c, d, a, 7, 22, T8);
265  SET(a, b, c, d, 8, 7, T9);
266  SET(d, a, b, c, 9, 12, T10);
267  SET(c, d, a, b, 10, 17, T11);
268  SET(b, c, d, a, 11, 22, T12);
269  SET(a, b, c, d, 12, 7, T13);
270  SET(d, a, b, c, 13, 12, T14);
271  SET(c, d, a, b, 14, 17, T15);
272  SET(b, c, d, a, 15, 22, T16);
273 #undef SET
274 
275  /* Round 2. */
276  /* Let [abcd k s i] denote the operation
277  a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
278 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
279 #define SET(a, b, c, d, k, s, Ti)\
280  t = a + G(b,c,d) + X[k] + Ti;\
281  a = ROTATE_LEFT(t, s) + b
282  /* Do the following 16 operations. */
283  SET(a, b, c, d, 1, 5, T17);
284  SET(d, a, b, c, 6, 9, T18);
285  SET(c, d, a, b, 11, 14, T19);
286  SET(b, c, d, a, 0, 20, T20);
287  SET(a, b, c, d, 5, 5, T21);
288  SET(d, a, b, c, 10, 9, T22);
289  SET(c, d, a, b, 15, 14, T23);
290  SET(b, c, d, a, 4, 20, T24);
291  SET(a, b, c, d, 9, 5, T25);
292  SET(d, a, b, c, 14, 9, T26);
293  SET(c, d, a, b, 3, 14, T27);
294  SET(b, c, d, a, 8, 20, T28);
295  SET(a, b, c, d, 13, 5, T29);
296  SET(d, a, b, c, 2, 9, T30);
297  SET(c, d, a, b, 7, 14, T31);
298  SET(b, c, d, a, 12, 20, T32);
299 #undef SET
300 
301  /* Round 3. */
302  /* Let [abcd k s t] denote the operation
303  a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
304 #define H(x, y, z) ((x) ^ (y) ^ (z))
305 #define SET(a, b, c, d, k, s, Ti)\
306  t = a + H(b,c,d) + X[k] + Ti;\
307  a = ROTATE_LEFT(t, s) + b
308  /* Do the following 16 operations. */
309  SET(a, b, c, d, 5, 4, T33);
310  SET(d, a, b, c, 8, 11, T34);
311  SET(c, d, a, b, 11, 16, T35);
312  SET(b, c, d, a, 14, 23, T36);
313  SET(a, b, c, d, 1, 4, T37);
314  SET(d, a, b, c, 4, 11, T38);
315  SET(c, d, a, b, 7, 16, T39);
316  SET(b, c, d, a, 10, 23, T40);
317  SET(a, b, c, d, 13, 4, T41);
318  SET(d, a, b, c, 0, 11, T42);
319  SET(c, d, a, b, 3, 16, T43);
320  SET(b, c, d, a, 6, 23, T44);
321  SET(a, b, c, d, 9, 4, T45);
322  SET(d, a, b, c, 12, 11, T46);
323  SET(c, d, a, b, 15, 16, T47);
324  SET(b, c, d, a, 2, 23, T48);
325 #undef SET
326 
327  /* Round 4. */
328  /* Let [abcd k s t] denote the operation
329  a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
330 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
331 #define SET(a, b, c, d, k, s, Ti)\
332  t = a + I(b,c,d) + X[k] + Ti;\
333  a = ROTATE_LEFT(t, s) + b
334  /* Do the following 16 operations. */
335  SET(a, b, c, d, 0, 6, T49);
336  SET(d, a, b, c, 7, 10, T50);
337  SET(c, d, a, b, 14, 15, T51);
338  SET(b, c, d, a, 5, 21, T52);
339  SET(a, b, c, d, 12, 6, T53);
340  SET(d, a, b, c, 3, 10, T54);
341  SET(c, d, a, b, 10, 15, T55);
342  SET(b, c, d, a, 1, 21, T56);
343  SET(a, b, c, d, 8, 6, T57);
344  SET(d, a, b, c, 15, 10, T58);
345  SET(c, d, a, b, 6, 15, T59);
346  SET(b, c, d, a, 13, 21, T60);
347  SET(a, b, c, d, 4, 6, T61);
348  SET(d, a, b, c, 11, 10, T62);
349  SET(c, d, a, b, 2, 15, T63);
350  SET(b, c, d, a, 9, 21, T64);
351 #undef SET
352 
353  /* Then perform the following additions. (That is increment each
354  of the four registers by the value it had before this block
355  was started.) */
356  m_state.abcd[0] += a;
357  m_state.abcd[1] += b;
358  m_state.abcd[2] += c;
359  m_state.abcd[3] += d;
360  }
361 
362  void MD5::init()
363  {
364  m_finished = false;
365  m_state.count[0] = 0;
366  m_state.count[1] = 0;
367  m_state.abcd[0] = 0x67452301;
368  m_state.abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
369  m_state.abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
370  m_state.abcd[3] = 0x10325476;
371  }
372 
373  void MD5::feed( const std::string& data )
374  {
375  feed( reinterpret_cast<const unsigned char*>( data.c_str() ), static_cast<int>( data.length() ) );
376  }
377 
378  void MD5::feed( const unsigned char* data, int bytes )
379  {
380  const unsigned char* p = data;
381  int left = bytes;
382  int offset = ( m_state.count[0] >> 3 ) & 63;
383  unsigned int nbits = static_cast<unsigned int>( bytes << 3 );
384 
385  if( bytes <= 0 )
386  return;
387 
388  /* Update the message length. */
389  m_state.count[1] += bytes >> 29;
390  m_state.count[0] += nbits;
391  if( m_state.count[0] < nbits )
392  m_state.count[1]++;
393 
394  /* Process an initial partial block. */
395  if( offset )
396  {
397  int copy = ( offset + bytes > 64 ? 64 - offset : bytes );
398 
399  memcpy( m_state.buf + offset, p, copy );
400  if( offset + copy < 64 )
401  return;
402  p += copy;
403  left -= copy;
404  process( m_state.buf );
405  }
406 
407  /* Process full blocks. */
408  for( ; left >= 64; p += 64, left -= 64 )
409  process( p );
410 
411  /* Process a final partial block. */
412  if( left )
413  memcpy( m_state.buf, p, left );
414  }
415 
417  {
418  if( m_finished )
419  return;
420 
421  unsigned char data[8];
422 
423  /* Save the length before padding. */
424  for( int i = 0; i < 8; ++i )
425  data[i] = static_cast<unsigned char>( m_state.count[i >> 2] >> ( ( i & 3 ) << 3 ) );
426 
427  /* Pad to 56 bytes mod 64. */
428  feed( pad, ( ( 55 - ( m_state.count[0] >> 3 ) ) & 63 ) + 1 );
429 
430  /* Append the length. */
431  feed( data, 8 );
432 
433  m_finished = true;
434  }
435 
436  const std::string MD5::hex()
437  {
438  if( !m_finished )
439  finalize();
440 
441  char buf[33];
442 
443  for( int i = 0; i < 16; ++i )
444  sprintf( buf + i * 2, "%02x", static_cast<unsigned char>( m_state.abcd[i >> 2] >> ( ( i & 3 ) << 3 ) ) );
445 
446  return std::string( buf, 32 );
447  }
448 
449  const std::string MD5::binary()
450  {
451  if( !m_finished )
452  finalize();
453 
454  unsigned char digest[16];
455  for( int i = 0; i < 16; ++i )
456  digest[i] = static_cast<unsigned char>( m_state.abcd[i >> 2] >> ( ( i & 3 ) << 3 ) );
457 
458  return std::string( reinterpret_cast<char*>( digest ), 16 );
459  }
460 
461  void MD5::reset()
462  {
463  init();
464  }
465 
466 }
void feed(const unsigned char *data, int bytes)
Definition: md5.cpp:378
void finalize()
Definition: md5.cpp:416
virtual ~MD5()
Definition: md5.cpp:174
const std::string binary()
Definition: md5.cpp:449
const std::string hex()
Definition: md5.cpp:436
void reset()
Definition: md5.cpp:461
The namespace for the gloox library.
Definition: adhoc.cpp:28